adaptive training #3

it’s amazing what changing the targets can do. now they’re spread evenly from the starting position (uniform distance) and they seem to do much better, rather than finding a local maximum (a single target that’s easier to get to than the others).

run length:27
0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25
avg 0.1299111 0.1520748 0.2072772 0.3187084 0.3958412 0.6468749 0.6010848 0.7655407 0.9283564 0.9560807 1.27025 1.240294 1.078598 1.257212 1.092487 1.327467 1.08835 1.154903 1.370362 1.198214 1.211951 1.178578 1.253744 0.9513875 1.347026 0.8872428
max 0.6187887 0.7656475 1.199693 1.060628 1.624553 2.014889 2.00272 1.532919 1.779993 2.924508 2.019435 1.890425 2.37094 2.055064 1.812547 2.125103 2.044051 1.91144 2.050521 2.57358 1.498748 1.417337 1.908807 1.261683 1.80807 1.39744
Population Size
100
Run Length
20
Do Training
False
Do Hybrid Training
True
Do Competitive Run
False
Do Adaptive Training
True
Inputs
hasTarget,targetLeft,targetRight,targetNorth,targetSouth,dirToTarget,distToTarget,wall,sensor0,sensor1,sensor2
Outputs
left,right,up,down,run,sensordir0,sensordir1,sensordir2
Hidden Layers
8 12 12 12 8
Back Propogation
True
Learning rate
0.5
Momentum
0.1
Growth rate
0.5