29 Jul 2012
run length:35
|
0 |
1 |
2 |
3 |
4 |
5 |
6 |
7 |
8 |
9 |
10 |
11 |
12 |
13 |
14 |
15 |
16 |
17 |
18 |
19 |
20 |
21 |
22 |
23 |
24 |
25 |
26 |
27 |
28 |
29 |
30 |
31 |
32 |
33 |
avg |
0.1054728 |
0.1185876 |
0.1258131 |
0.130587 |
0.1506598 |
0.2122319 |
0.4581497 |
0.8586704 |
1.20199 |
1.170219 |
0.9763492 |
1.176481 |
0.938668 |
0.9572123 |
0.902207 |
1.133812 |
1.098755 |
0.9892185 |
1.5469 |
1.384855 |
1.156185 |
0.8816531 |
1.155313 |
1.370298 |
0.9086894 |
1.091801 |
0.9211531 |
1.064359 |
1.445552 |
0.9272204 |
1.219871 |
1.281623 |
1.345069 |
1.290509 |
max |
0.1787508 |
0.3422044 |
0.4880244 |
0.4869769 |
1.047815 |
1.288545 |
1.504831 |
1.27506 |
1.43819 |
1.796796 |
1.367374 |
1.229414 |
1.067725 |
1.265468 |
1.230431 |
1.216018 |
1.179089 |
1.173458 |
1.681361 |
1.496624 |
1.225676 |
1.205523 |
1.230803 |
1.436737 |
1.25253 |
1.174299 |
0.9801109 |
1.207027 |
1.711045 |
1.16089 |
1.435449 |
1.345895 |
1.40991 |
1.366372 |
- Population Size
- 100
- Run Length
- 20
- Do Training
- False
- Do Hybrid Training
- True
- Do Competitive Run
- False
- Do Adaptive Training
- True
- Inputs
- hasTarget,targetLeft,targetRight,targetNorth,targetSouth,dirToTarget,distToTarget,wall,sensor0,sensor1,sensor2
- Outputs
- left,right,up,down,run,sensordir0,sensordir1,sensordir2
- Hidden Layers
- 8 12 12 12 8
- Back Propogation
- True
- Learning rate
- 0.5
- Momentum
- 0.1
- Growth rate
- 0.5
29 Jul 2012
it’s amazing what changing the targets can do. now they’re spread evenly from the starting position (uniform distance) and they seem to do much better, rather than finding a local maximum (a single target that’s easier to get to than the others).
run length:27
|
0 |
1 |
2 |
3 |
4 |
5 |
6 |
7 |
8 |
9 |
10 |
11 |
12 |
13 |
14 |
15 |
16 |
17 |
18 |
19 |
20 |
21 |
22 |
23 |
24 |
25 |
avg |
0.1299111 |
0.1520748 |
0.2072772 |
0.3187084 |
0.3958412 |
0.6468749 |
0.6010848 |
0.7655407 |
0.9283564 |
0.9560807 |
1.27025 |
1.240294 |
1.078598 |
1.257212 |
1.092487 |
1.327467 |
1.08835 |
1.154903 |
1.370362 |
1.198214 |
1.211951 |
1.178578 |
1.253744 |
0.9513875 |
1.347026 |
0.8872428 |
max |
0.6187887 |
0.7656475 |
1.199693 |
1.060628 |
1.624553 |
2.014889 |
2.00272 |
1.532919 |
1.779993 |
2.924508 |
2.019435 |
1.890425 |
2.37094 |
2.055064 |
1.812547 |
2.125103 |
2.044051 |
1.91144 |
2.050521 |
2.57358 |
1.498748 |
1.417337 |
1.908807 |
1.261683 |
1.80807 |
1.39744 |
- Population Size
- 100
- Run Length
- 20
- Do Training
- False
- Do Hybrid Training
- True
- Do Competitive Run
- False
- Do Adaptive Training
- True
- Inputs
- hasTarget,targetLeft,targetRight,targetNorth,targetSouth,dirToTarget,distToTarget,wall,sensor0,sensor1,sensor2
- Outputs
- left,right,up,down,run,sensordir0,sensordir1,sensordir2
- Hidden Layers
- 8 12 12 12 8
- Back Propogation
- True
- Learning rate
- 0.5
- Momentum
- 0.1
- Growth rate
- 0.5
29 Jul 2012
run length:48
|
0 |
1 |
2 |
3 |
4 |
5 |
6 |
7 |
8 |
9 |
10 |
11 |
12 |
13 |
14 |
15 |
16 |
17 |
18 |
19 |
20 |
21 |
22 |
23 |
24 |
25 |
26 |
27 |
28 |
29 |
30 |
31 |
32 |
33 |
34 |
35 |
36 |
37 |
38 |
39 |
40 |
41 |
42 |
43 |
44 |
45 |
46 |
avg |
0.11333 |
0.1216922 |
0.1410408 |
0.2255169 |
0.3438947 |
0.5308622 |
0.7092866 |
0.7473413 |
0.8380993 |
0.8315367 |
0.9242428 |
0.8393147 |
1.103198 |
1.054069 |
1.111683 |
1.051629 |
1.028054 |
1.043636 |
0.9677835 |
1.01511 |
1.045051 |
1.138088 |
1.002189 |
0.8751988 |
0.9423944 |
0.9026732 |
1.062976 |
0.9172046 |
1.334726 |
1.079931 |
0.7032812 |
1.377699 |
1.236436 |
1.741362 |
1.081763 |
1.341366 |
0.8942567 |
0.9266959 |
1.079842 |
1.067705 |
0.7557345 |
1.354618 |
0.9338629 |
1.070021 |
1.288732 |
1.196118 |
1.037447 |
max |
0.4842224 |
0.7318087 |
0.7872303 |
1.314361 |
1.167771 |
1.026197 |
1.422564 |
1.538746 |
1.474501 |
1.283453 |
1.423418 |
1.349116 |
1.614929 |
1.392465 |
1.4685 |
1.274314 |
1.203464 |
1.228827 |
1.08125 |
1.171278 |
1.106939 |
1.359823 |
1.106474 |
0.9218987 |
1.06358 |
1.007161 |
1.376667 |
0.9957669 |
1.447871 |
1.173347 |
0.8280649 |
1.515407 |
1.369468 |
1.839345 |
1.161362 |
1.377432 |
0.9441369 |
0.9500773 |
1.109659 |
1.092207 |
0.7708632 |
1.38819 |
0.9459927 |
1.093874 |
1.322104 |
1.24041 |
1.065003 |
- Population Size
- 100
- Run Length
- 20
- Do Training
- False
- Do Hybrid Training
- True
- Do Competitive Run
- False
- Do Adaptive Training
- True
- Inputs
- hasTarget,targetLeft,targetRight,targetNorth,targetSouth,dirToTarget,distToTarget,wall,sensor0,sensor1,sensor2
- Outputs
- left,right,up,down,run,sensordir0,sensordir1,sensordir2
- Hidden Layers
- 8 12 12 12 8
- Back Propogation
- True
- Learning rate
- 0.5
- Momentum
- 0.1
- Growth rate
- 0.5
22 Jul 2012
and a run w/another hidden layer
run length:33
|
0 |
1 |
2 |
3 |
4 |
5 |
6 |
7 |
8 |
9 |
10 |
11 |
12 |
13 |
14 |
15 |
16 |
17 |
18 |
19 |
20 |
21 |
22 |
23 |
24 |
25 |
26 |
27 |
28 |
29 |
30 |
31 |
avg |
0.1104814 |
0.136816 |
0.1908503 |
0.3284849 |
0.6684353 |
1.282734 |
1.302261 |
1.206301 |
1.358841 |
1.126256 |
1.397736 |
1.246604 |
1.323351 |
0.8909027 |
1.122478 |
1.108233 |
1.631226 |
1.291764 |
1.220225 |
1.21547 |
1.299522 |
1.295794 |
1.360445 |
1.006665 |
1.005265 |
1.285506 |
1.723688 |
0.9848436 |
0.9455433 |
0.9313265 |
1.148989 |
1.272345 |
max |
0.2871341 |
1.214576 |
1.067269 |
1.103958 |
1.354696 |
1.475417 |
1.366202 |
1.234541 |
1.390623 |
1.173298 |
1.426518 |
1.764977 |
1.396152 |
0.9108025 |
1.144939 |
1.133509 |
1.90503 |
1.320514 |
1.246103 |
1.239381 |
1.498761 |
1.339491 |
1.46306 |
1.135313 |
1.030648 |
1.328566 |
1.772488 |
1.166132 |
0.9746216 |
1.090431 |
1.179814 |
1.307164 |
- Population Size
- 100
- Run Length
- 20
- Do Training
- False
- Do Hybrid Training
- True
- Do Competitive Run
- False
- Inputs
- hasTarget,targetLeft,targetRight,targetNorth,targetSouth,dirToTarget,distToTarget,wall,sensor0,sensor1,sensor2
- Outputs
- left,right,up,down,run,sensordir0,sensordir1,sensordir2
- Hidden Layers
- 8 12 12 12 8
- Back Propogation
- True
- Learning rate
- 0.5
- Momentum
- 0.1
- Growth rate
- 0.5
22 Jul 2012
Revisiting this whole neural net thing. Did another, longer run after tweaking a bunch of things (mostly removing cruft from the side-view test, like jumping and “grounded” and such).
run length:28
|
0 |
1 |
2 |
3 |
4 |
5 |
6 |
7 |
8 |
9 |
10 |
11 |
12 |
13 |
14 |
15 |
16 |
17 |
18 |
19 |
20 |
21 |
22 |
23 |
24 |
25 |
26 |
avg |
0.1111835 |
0.1175151 |
0.1161713 |
0.1256572 |
0.1368807 |
0.156331 |
0.1656164 |
0.2083951 |
0.2679169 |
0.3795652 |
0.4956123 |
0.6501181 |
0.561227 |
0.763023 |
0.626345 |
0.684875 |
0.9196341 |
0.7514365 |
0.8885059 |
1.065271 |
0.9615093 |
0.809881 |
0.744675 |
1.001024 |
0.838229 |
0.8915754 |
0.8473446 |
max |
0.2450459 |
0.2755109 |
0.2239121 |
0.4235514 |
0.4872672 |
0.4836805 |
0.9154767 |
1.048801 |
0.8001958 |
0.8589709 |
1.126522 |
1.106779 |
0.9452468 |
1.010383 |
0.7943439 |
1.048769 |
1.18526 |
0.9457676 |
1.149609 |
1.234839 |
1.202767 |
0.9807028 |
1.026631 |
1.079651 |
0.8743093 |
0.9314666 |
0.9513353 |
- Population Size
- 100
- Run Length
- 20
- Do Training
- False
- Do Hybrid Training
- True
- Do Competitive Run
- False
- Inputs
- hasTarget,targetLeft,targetRight,targetNorth,targetSouth,dirToTarget,distToTarget,wall,sensor0,sensor1,sensor2
- Outputs
- left,right,up,down,run,sensordir0,sensordir1,sensordir2
- Hidden Layers
- 8 12 12 8
- Back Propogation
- True
- Learning rate
- 0.5
- Momentum
- 0.1
- Growth rate
- 0.5